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Abstract
Background Dento-maxillofacial deformities are common problems. Orthodontic–orthognathic surgery is the 
primary treatment but accurate diagnosis and careful surgical planning are essential for optimum outcomes. This 
study aimed to establish and verify a machine learning–based decision support system for treatment of dento-
maxillofacial malformations.

Methods Patients (n = 574) with dento-maxillofacial deformities undergoing spiral CT during January 2015 to August 
2020 were enrolled to train diagnostic models based on five different machine learning algorithms; the diagnostic 
performances were compared with expert diagnoses. Accuracy, sensitivity, specificity, and area under the curve (AUC) 
were calculated. The adaptive artificial bee colony algorithm was employed to formulate the orthognathic surgical 
plan, and subsequently evaluated by maxillofacial surgeons in a cohort of 50 patients. The objective evaluation 
included the difference in bone position between the artificial intelligence (AI) generated and actual surgical plans for 
the patient, along with discrepancies in postoperative cephalometric analysis outcomes.

Results The binary relevance extreme gradient boosting model performed best, with diagnostic success rates > 90% 
for six different kinds of dento-maxillofacial deformities; the exception was maxillary overdevelopment (89.27%). 
AUC was > 0.88 for all diagnostic types. Median score for the surgical plans was 9, and was improved after human–
computer interaction. There was no statistically significant difference between the actual and AI- groups.

Conclusions Machine learning algorithms are effective for diagnosis and surgical planning of dento-maxillofacial 
deformities and help improve diagnostic efficiency, especially in lower medical centers.
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Introduction
Dento-maxillofacial deformities are a common problem 
in clinical practice, with approximately 5% of the popula-
tion exhibiting abnormal jaw development [1, 2]. Orth-
odontic–orthognathic surgery is the primary treatment 
for these deformities, but accurate diagnosis and careful 
surgical planning are essential for optimum outcomes 
[3–5]. The diagnosis of dento-maxillofacial deformities 
and the design of orthognathic surgery rely primarily on 
clinical examination, assessment of occlusal relationship, 
and cephalometry [1].

Artificial intelligence (AI) has demonstrated the capa-
bility to identify skeletal malocclusions and predict the 
need for orthognathic surgery [6, 7]. However, previous 
studies have mainly relied on lateral cephalometric data, 
which inevitably results in information loss. These stud-
ies diagnosed dento-maxillofacial deformities through 
imaging, and specific surgical plans were not designed. 
Moreover, certain scholars have employed 3D point 
cloud deep learning to generate bone templates for guid-
ing bone block movement schemes in orthognathic sur-
gery [8]. While this represents a novel approach toward 
AI-assisted orthognathic surgery design, there is a lack of 
clinical validation for this method.

The present study created an interactive decision sup-
port system that could output an accurate diagnosis of 
dento-maxillofacial deformities and recommend individ-
ual surgical plans based on surgeon preferences.

Methods
This study was conducted in the West China Hospital of 
Stomatology of Sichuan University and was approved by 
the Investigational Review Board of West China Hospi-
tal of Stomatology (WCHSIRB-OT-2019-125). All pro-
cedures were in accordance with relevant guidelines and 
regulations.

Patients
A total of 574 patients who visited the Department of 
Orthognathic and Temporomandibular Joint Surgery, 
West China Hospital of Stomatology, Sichuan University, 
from January 2015 to August 2020 formed the training 
cohort. We excluded patients with missing teeth (other 
than third molars), previous history of orthodontic and 

orthognathic treatment, dento-maxillofacial deformities 
caused by fractures or tumors, and those who did not 
undergo digital surgical planning. A total of 89 patients 
were excluded.

Demographic information, extraoral and intraoral 
photographs, and pretreatment cephalometric measure-
ments were extracted from the clinical records (Table 1) 
[2, 9], and 27 features were used as input features (Table 
S1). The input features were preprocessed to ensure that 
all were quantified before being used for model train-
ing. The diagnosis of dento-maxillofacial deformity was 
made by an orthognathic surgeon (Dr. Luo) with 19 years 
of clinical experience. The deformities included those of 
maxillary development, mandibular development, maxil-
lary deviation, and mandibular deviation.

Diagnosis model
Different types of dento-maxillofacial deformities were 
diagnosed based on their characteristics, resulting in a 
comprehensive collection of 28 clinical features. These 
features were used to evaluate maxillary and mandibu-
lar development and deviations. The measurements were 
obtained with spiral computerized tomography (CT) uti-
lizing the Mimics 16.0 software (Materialise Inc., Leuven, 
Belgium). All measurements were repeated twice and 
averaged by two orthognathic surgeons after an interval 
of at least 1 week. Cephalometric measurements indicat-
ing the degree of jaw deflection were considered positive 
from top left to bottom right.

Common classifier algorithms included extreme gra-
dient boosting (XGBoost), discriminant analysis, naive 
Bayesian classification, neural networks, and support 
vector machines (SVM). These models were applied to 
the test set to evaluate the appropriateness and effective-
ness of each model and determined the most appropriate 
and superior model. To ensure optimal classifier perfor-
mance and generalizability, we randomly divided the data 
into training, validation, and test sets in a ratio of 7:3:1. 
The binary relevance extreme gradient boosting (BR-
XGBoost) algorithm demonstrated superior performance 
compared to the remaining four machine learning algo-
rithms in the validation set.

BR-XGBoost algorithm was used to process the data 
on dental and maxillofacial malformations and realize 

Table 1 Demographic and clinical characteristics of patients in this study
N = 574 Male Female
Age, years, mean (SD) 23.4 (7.2) 26.3 (8.5)
Sex 203 (35.4%) 371 (64.6%)
Maxillary development Underdevelopment 201 (35%) Normal 210 (36.6%) Overdevelopment 163 (28.4%)
Maxillary deviation Deviation 208 (36.2%) Non-deviation 366 (63.8%)
Mandibular development Underdevelopment 175 (30.5%) Normal 138 (24%) Overdevelopment 261 (45.5%)
Mandibular deviation Deviation 253 (44.1%) Non-deviation 321 (55.9%)
SD, standard deviation
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intelligent diagnosis [10]. Similar to the traditional super-
vised tree model algorithm based on the boosting 
principle, BR-XGBoost integrates several weak classi-
fiers into a strong classifier through multiple rounds 
of iteration and residual fitting; the method has good 
generalization performance and operation efficiency. 
We modeled the diagnosis problem as Q single label 
two classification models. Q is the number of labels, 
and each label represents whether the patient has this 
particular kind of disease. For disease j, a training set 
Dj = {(Xi, yi) |1 � i � n} (1 � j � Q) is set up, where 
i is the sample serial number, X is the patient’s clini-
cal symptom vector, and yi ∈ {1, 0}  indicates whether 
sample i belongs to label j. The XGBoost binary clas-
sification model was constructed based on Dj  train-
ing, so that the prediction result yj  of label j could be 
obtained. Then, multiple binary classifiers were com-
bined into BR-XGBoost to output the multilabel diagno-
sis Y = [y1, y2, ..., yQ] .

Considering the differences in patients’ clinical symp-
toms, it was necessary to study the generalization perfor-
mance of the proposed algorithm. The feature selection 
of each XGBoostj  was based on the forward sequence 
selection method. For label j, first, the importance rank-
ing of all features was obtained based on BR-XGBoost. 
The features with the top rankings were then added to 
the feature subset (initially empty set), and the cross-val-
idation classification accuracy of the feature subset was 
calculated after each addition. If the classification accu-
racy was improved, the feature was retained, otherwise it 
was eliminated, and the optimal feature subset of label j 
was obtained by traversing all features. The performance 
of the model was not only affected by the training set, 
but also by the selection of its built-in parameters, that 
is, super parameters. To avoid the complexity and uncer-
tainty of manual parameter adjustment, the distributed 
asynchronous hyper parameter optimization module on 
the Pycharm platform was used. Based on the Bayesian 
optimization theory, the cross-validation method was 
adopted to optimize each BR-XGBoost, and determine 
the range of hyper-parameters, thereby improving model 
accuracy.

To evaluate the performance of the artificial intelli-
gence model, the following normal metrics were used.

1) Accuracy: Accuracy = TP+TN
TP+FP+TN+FN

2) Precision: Precision = TP
TP+FP

3) Recall: Recall = TP
TP+FN

4) Specificity: Specificity = TN
FP+TN

5) F1score: F1score = 2 · Precision·Recall
Precision+Recall

6) AUC: Area under the curve.

where TP = true positive, TN = true negative, FP = false 
positive, and FN = false negative.

Surgical design model
Following preoperative orthodontics, cephalometric 
measurements were re-performed to obtain patient-
specific characteristics. The terminal occlusal relation-
ship was recorded by the 3D spatial relationship of three 
points marked on the maxilla and the mandible. The ref-
erence intervals of these characteristics were established 
based on their normal intervals in the Chinese popula-
tion and our clinical experience. Six sets of data were 
used to accurately describe the 3D movement of the 
maxilla, mandible, and chin according to the commonly 
used clinical methods.

The AI-based surgical model employed the adaptive 
artificial bee colony (aABC) algorithm to calculate the 
maxillary movement, mandibular movement, and men-
tum movement. The 3D translation and rotation of each 
part in the surgical scheme constitute the solution space 
of the aABC algorithm. All possible solutions in the solu-
tion space are expressed by honey source, and the degree 
of honey source is measured by the value of fitness func-
tion. Bees can be divided into three types according to 
division of labor: collecting bees, following bees, and 
reconnaissance bees (collecting bees and following bees 
each account for half of the total number of bees; the col-
lecting bees corresponding to inferior honey sources are 
transformed into reconnaissance bees to search for new 
honey sources). The specific search for honey source is as 
follows:

1) The algorithm was initialized.
2) Algorithm optimization objectives were determined. 

In this step, the reasonable range of values for 
each feature was determined. These ranges were 
superimposed to form the optimized feasible region 
of the algorithm proposed in this paper. The optimal 
eigenvalue within the feasible range was determined 
as the final surgical plan. This study assumed that 
feature values closer to the middle of the range were 
better.

3) Intelligent exploration of the optimal solution for 
surgical plans based on aABC algorithm: With 
increase of the number of cycles of the algorithm, 
the weight between algorithm exploration and 
development constantly changes. When the cycle 
starts, the algorithm has a high weight in exploration, 
and the global search ability is strengthened, so 
it is not easy to fall into local optimization. The 
continuous increase in the number of cycles 
gradually decreases the adaptive coefficient value. 
At this time, the algorithm tends to develop the 
region guided by the global optimal solution, which 
improves the convergence speed and accuracy of the 
algorithm.
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4) For the following bee, the calculated probability 
value selects the honey source and carries out 
neighborhood search to generate a new solution, and 
selects the honey source with better fitness value.

5) If no better honey source is found within a limited 
number of times, the honey source is discarded and a 
new honey source is randomly generated.

6) The optimal honey source (global optimal solution) 
found by all bees is saved, and the termination 
condition of the algorithm (maximum number 
of iterations) is judged. If the conditions are met, 
the optimal surgical scheme is returned and the 
algorithm is terminated. Otherwise, we return to the 
first step to continue the algorithm.

The surgical plan generated by the surgical design model 
could be adjusted according to expert preferences, a pro-
cess called human-computer interaction. The surgical 
plans were generated using features of the normal popu-
lation. In case of dissatisfaction with the current design 
plan regarding the feasibility and outcome of the opera-
tion, the surgeon could propose potential modifications 
to the jaw’s movement.

The AI-generated surgical plan was subjectively and 
objectively evaluated using the test set. The subjective 
evaluation of the surgical plan encompassed both fea-
sibility and effectiveness assessments, conducted by 
three experienced orthognathic surgeons from our cen-
ter. None of these surgeons were involved in the study’s 
design, and only evaluated the effect of the surgical pro-
tocol based on their clinical experience. Prior to com-
mencing the study, intraclass correlation coefficients 
(ICCs) for the realistic surgical plan from the test set 
were analyzed among the three participating surgeons 
by the realistic surgical plan from the test set. The objec-
tive evaluation included the difference in bone position 
between the AI-generated and actual surgical plans, as 
well as discrepancies in postoperative cephalometric 
analysis outcomes. Measurements were conducted using 
3-matic 9.0 software (Materialise, Belgium). Paired t test 
was used to analyze statistical differences in cephalomet-
ric results.

Figure 1 presents an overview of the decision support 
system and treatment planning.

Fig. 1 Pipeline of the proposed decision support system for orthognathic diagnosis and treatment planning
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Results
Performance of diagnostic system
Of the five different types of machine learning algo-
rithms, the BR-XGBoost algorithm showed the high-
est accuracy and sensitivity for classification of different 
types of dento-maxillofacial deformities (Fig.  2). The 
receiver operating characteristic (ROC) curve in Fig.  3 
illustrates the performance of the BR-XGBoost algorithm 
in the diagnosis dento-maxillofacial deformities. The 
AUC for the model ranged from 0.881 to 0.982. The best 
performance was for diagnosis of deviation, followed by 
mandibular overdevelopment and maxillary underde-
velopment. The diagnostic model classified the dento-
maxillofacial deformities, and the combination of the two 
provided the final diagnosis.

Performance of the surgical design model
The system can output a personalized surgical plan 
(Fig.  4). The output results contain six 3D parameters 
representing rotation and movement of maxilla, mandi-
ble, and chin. For movement of maxilla and mandible, the 
corresponding incisor point was taken as the movement 
center. For the chin, the pogonion point was taken as the 
movement center and is reduced to have translational 
movement only.

The ICCs for the three participating orthognathic sur-
geons in this study, are presented in Table S2. The effec-
tiveness and feasibility of intelligently designed surgical 
procedures were rated on a scale of 1 to 10. The surgical 
plans were individually evaluated by the three surgeons; 
the distribution of their scores is presented in Table 2.

The fitting analysis process is shown in Fig.  5, while 
the discrepancies in the maxilla, mandible, and chin 
positions under two distinct schemes are presented in 
Table 3.

The differences in three-dimensional cephalometric 
measurements result between the actual surgical and the 
AI-model are presented in Table 4.

Figure  6, and 7 present the cephalometric data and 
automatically generated surgical plans for three patients 
with dento-maxillofacial deformities.

Discussion
In this study, we propose a machine learning–based 
decision support system for orthognathic diagnosis and 
treatment planning. The system can diagnose dento-
maxillofacial deformities and output an interactive and 
personalized surgical option by analyzing patients’ clini-
cal features and the preferences of both the surgeon and 

Fig. 2 The performance of five machine learning algorithms (BR-XGBoost, SVM, neural network, discriminant analysis, Bayesian classification) was evaluat-
ed in six classification problems related to dento-maxillofacial deformities: maxillary overgrowth, maxillary undergrowth, maxillary deviation, mandibular 
overgrowth, mandibular undergrowth, and mandibular deviation. The radar chart shows the algorithm performs on Accuracy, Precision, Recall, Specificity, 
and F1 score. The BR-XGBoost algorithm consistently demonstrated superior results across all six classification problems
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Fig. 4 Personalized surgical plan designed by the system for a skeletal class III malocclusion patient

 

Fig. 3 ROC curve of the BR-XGBoost algorithm in the diagnosis of dento-maxillofacial deformities. The AUC values ranged from 0.881 to 0.982 in different 
diagnostic classification tasks
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the patient. The system achieved an overall accuracy rate 
of > 90% and was highly rated by expert reviewers.

The diagnosis and treatment planning of dento-maxil-
lofacial deformities is a multifaceted process influenced 
by various factors, including ethnicity, esthetics, and 
diagnostic practices [2, 11]. The surgeon’s experience also 
plays an important role. Dento-maxillofacial deformi-
ties manifest as an incongruity in the spatial relationship 
between the teeth and the jaw, and generally requires 
orthognathic and orthodontic treatment. Advancements 
in orthognathic surgery have led to the development of 
several objective indicators for aiding the surgeons in 
diagnosis and surgical planning. The classical two-dimen-
sional cephalometry, model surgery, and VTO techniques 
can provide surgeons with valuable quantitative diagnos-
tic information and aid meticulous surgical planning [12]. 
With the advancements in computer technology, digital 
surgical technology has enabled the surgeons to perform 
computerized preoperative osteotomy and postoperative 
bone morphology simulations [13, 14]. This holds great 
significance for the precise design and implementation of 
the surgical plan.

Digital surgery has become standard practice in 
orthognathic surgery across numerous clinical centers. 
Its execution requires a collaboration among profes-
sional institutions, their affiliated hospitals, and digital 
surgery design companies. However, certain challenges 
persist, including a complex manual operation process, 
a significant need for repetitive labor, low efficiency, and 
prolonged time consumption [15]. The diagnosis and sur-
gical design of dento-maxillofacial deformities adhere to 
highly standardized protocols, ensuring stability in the 
selection of surgical methods and enabling quantifiable 
surgical planning. These favorable conditions facilitate 
intelligent diagnosis and surgical design for dento-max-
illofacial deformities. Considering the characteristics of 
orthognathic surgery, broader applications of AI in this 
domain are inevitable in the future. This may enhance the 
work efficiency, diagnostic accuracy, and treatment out-
comes, thereby benefiting both doctors and patients.

AI can be used to accurately classify patients’ skeletal 
patterns, enabling the identification of cranial struc-
tures with varying degrees of developmental deviations. 
This evaluation can be conducted using cephalometric 
images to classify anteroposterior and vertical skeletal 
discrepancies [16, 17]. The combination of posteroante-
rior radiographs and lateral cephalograms can enhance 
accuracy and provide additional information on asym-
metry [6, 18]. Previous studies have utilized AI to eluci-
date the necessity of orthognathic surgery. These studies 
utilized cephalometric parameters either independently 
or in conjunction with other assessments such as antero-
posterior radiographs, occlusal models, and demographic 
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variables for evaluating the need for orthognathic surgery 
[6, 17, 19].

The majority of existing studies have primarily focused 
on the identification of patients requiring orthognathic 
surgery. While one study has utilized deep learning to 
generate a virtual jaw shape and employed this model as a 
reference for designing specific jaw movements, the con-
structed model requires validation before clinical appli-
cation [8]. To the best of our knowledge, no study has yet 
achieved the successful development of personalized and 

precise orthognathic surgical design tailored specifically 
to individual patients.

The XGBoost algorithm has unique advantages in deal-
ing with diagnostic problems: it is excellent for paral-
lel operation and can run large-scale data quickly; it can 
automatically optimize split nodes and is good at dealing 
with irregular data with many outliers and missing val-
ues; and, finally, it is interpretable and flexible [20, 21]. 
Further, the XGBoost algorithm can handle difficult over 
fitting, has higher accuracy of loss function solution, sup-
ports sparse data processing, and so on. Compared with 

Table 3 Deviations between the surgical design model plans and the actual surgeries
Average deviation (mm) SD (mm) Error < 2 mm (%) Error < 3 mm (%) Error < 4 mm (%)

Maxilla 2.15 1.24 48.1 80.7 95.8
Mandible 2.81 1.57 31.9 71.5 91.4
Chin 3.32 1.79 24.8 59.8 78.6

Fig. 5 A color distance map was applied to align with the two surgical plans, where the colored bone segment depicted represents the actual surgical 
plan. The difference distribution is shown in the lower right corner
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the sample data in the industrial field where artificial 
intelligence is widely used, the sample size for the maxil-
lofacial diagnosis problem studied is small and so is ide-
ally suited for XGBoost, which is less demanding in terms 
of sample size. In this study, BR-XGBoost achieved the 
best overall performance, with overall accuracy rate of 
over 90%. Considering that some patient data were col-
lected manually, there was a certain amount of deviation 
noise. We found that the proposed algorithm had good 
detection performance when the deviation conformed 
to the normal distribution. The clinical features exhib-
ited variations between genders, with different reference 
intervals selected for different genders in this study [22].

The purpose of the orthognathic surgery was to correct 
incongruous three-dimensional positional relationships 
between the teeth and the jaws. Cephalometric indicators 
were the main clinical measures utilized for characteriz-
ing disharmony. The designed plan used several cephalo-
metric indicators that are commonly used in the clinic as 
a basis for correcting the abnormalities. When designing 
the optimal feature target value for AI algorithms in this 
study, we believe that the best feature values were those 
closest to the middle of each feature range. The aABC 
algorithm is a bionics adaptive artificial intelligence 
technique for solving extremum problems [23, 24]. It 
has natural advantages in solving function optimization 
problems and is also the most applied algorithm in the 
field though there are no reports of its application in the 
medical field. This algorithm can be used to solve multi-
variable function problems. To maximize the efficiency of 
the algorithm, we chose to use the aABC [25, 26], which 
can adaptively change the weight of each influencing 
factor in the search equation to simultaneously provide 
good exploration and development ability. The aABC 
algorithm increases the operation speed by about 30%. In 
this study, single operation time for one set of data was 
∼ 30 s.

The calculation of this process is complicated, and 
there may be multiple schemes that could meet the 
requirements. For cases requiring personalized surgical 
plans, this could be achieved by adjusting the optimal tar-
get feature values, a process called interactivity. The per-
sonalized parameter adjustment occurs in the 4) step of 
the aABC algorithm. Table 2 illustrates that the distribu-
tion of feasibility and effectiveness scores for the adjusted 
surgical protocol was superior to that for the primary 
output, indicating an improved effect of the surgical plan 
design.

It should be noted that cephalometric measurement is 
only one of the methods to evaluate dento-maxillofacial 
deformities, and using only cephalometric measurement 
to evaluate maxillofacial deformity will inevitably reduce 
diagnostic accuracy. However, the diagnostic accuracy 
rate in this study was acceptable. Except for mandibu-
lar underdevelopment, AUC was > 0.9 for all diagnostic 
problems. The AUC of mandibular underdevelopment 
was 0.881. The overall diagnostic accuracy for dento-
maxillofacial deformities was over 90%. In the present 
study, the BR-XGBoost algorithm achieved the best over-
all performance. Our classification was more extensive 
and accurate compared to similar previous studies.

The surgical effect refers to the impact of the sur-
gical plan on improving the patient’s dento-maxil-
lofacial deformity, including profile and symmetry 
improvements. The subjective effectiveness mean score 
was 8.8, which further increased to 9.08 after human-
computer interaction. Overall scores ranged from 8 to 10, 
with a median of 9, indicating that the AI-assisted surgi-
cal plan could successfully enhance facial appearance and 
achieve a high score deemed acceptable by experts.

Surgical feasibility refers to whether the extent of bone 
segment movement surpasses the surgical threshold, 
post-implementation jaw stability, and the risk of recur-
rence (e.g., the presence of bone contact). Subjective 
feasibility evaluation results indicated an initial average 
score of 8.34, which increased to 8.92 following human-
computer interaction. Overall scores ranged from 7 to 
10, with a median of 9, highlighting the clinical feasibil-
ity of AI-assisted surgical plans. Subjective evaluations 
revealed generally acceptable surgical outcomes. Prior 
to scoring, a consensus recommendation was reached by 
the three participating surgeons involved in the study. A 
higher ICC value, closer to 1, indicated a stronger level of 
agreement. The consistency test conducted on the three 
study demonstrated a high level of agreement in their 
evaluations.

A comparison of the positional deviation of the bone 
segments in the two distinct plans demonstrated that 
the average discrepancy in both maxilla and mandible 
was approximately 2 mm, with most regions exhibiting a 
deviation of < 4  mm. This indicates that there existed a 

Table 4 Differences in cephalometric measurements between 
different plans after simulation
Cephalometric values Actual plan AI plan

Mean ± SD Mean ± SD
Or-U6(R)/Or-U6(L) (%) 99.6 ± 1.3 100.1 ± 1
OP-FHP(°)(Roll) -0.3 ± 0.5 0.1 ± 0.3
Go-Me (R)/ Go-Me (L) (%) 99.6 ± 1.2 99.5 ± 0.9
Pog-MSP (mm) 0.15 ± 0.7 -0.23 ± 0.2
OP-FHP (°)(Pitch) 10.1 ± 2.4 12.6 ± 1.2
SNA (°) 80.4 ± 2.5 81.5 ± 1.3
SNB (°) 79.6 ± 2.2 79.3 ± 1.5
ANB(°) 2.0 ± 1.3 2.6 ± 0.6
SNPog(°) 78.6 ± 2.3 80.5 ± 1.6
N-ANS/ANS-Me (%) 82.4 ± 2 82.7 ± 1.2
There were no statistically significant differences between the two groups
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certain level of disparity in jaw bone positioning between 
the two plans. However, considering the intricate three-
dimensional morphology of the bone segment itself, no 
significant divergence was observed in subjective assess-
ment scores for efficacy within either group. Hence, it can 
be inferred that the maxillary and mandibular movement 

plans fell within an acceptable range. A comparison of the 
measurement items between the two schemes revealed 
no statistically significant differences between the two 
groups of data for each item. Additionally, the changes in 
the measurement indices closely aligned with the normal 
range, indicating an improvement in jaw morphology and 

Fig. 6 Representative case A. The decision support system diagnosed the patient with maxillary and mandibular deviation and designed a surgical plan. 
Three-dimensional visualization of the surgical effect was processed using Freeform plus software (3DSystems Inc., Rock Hill, USA). Lefort I osteotomy, 
BSSRO, and genioplasty were performed through the virtual surgical method. After completion of the osteotomy, the bone block was moved according 
to the AI-generated surgical plan. The patient’s dento-maxillofacial deformity improved significantly and the cephalometric measurements returned to 
normal
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facial shape for the patients. As this experiment included 
individuals with both skeletal Class II and skeletal Class 
III malocclusions, there were no significant differences 
between the mean preoperative and postoperative values. 
However, compared to the preoperative cephalometric 

results, a significant reduction in the standard deviation 
was observed, suggesting a greater number of data points 
trending toward the normal range.

The proposed system also had some limitations. The 
prediction of post-orthognathic surgery soft tissue 

Fig. 7 Representative case B. The patient was diagnosed with maxillary underdevelopment and mandibular overdevelopment by the decision support 
system. Three rounds of interaction between the surgeons and the system resulted in the final operation plan. Three-dimensional visualization of the 
surgical effect was processed using Freeform plus software (3DSystems Inc., Rock Hill, USA). Lefort I osteotomy, BSSRO, and genioplasty were performed 
through the virtual surgical method. After completion of the osteotomy, the bone block was moved according to the AI-generated surgical plan. The 
patient’s dento-maxillofacial deformity improved significantly and the cephalometric measurements returned to normal
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changes has long been a clinical challenge awaiting res-
olution. An intricate interplay of numerous factors sig-
nificantly influences these changes. This study focused 
exclusively on hard tissue alterations and did not encom-
pass the intricacies associated with soft tissue consider-
ations [27]. In the future, it may become possible to take 
these factors into consideration and plan orthognathic-
orthodontic therapy at the time of initial diagnosis [28].

In this study, jaw development was categorized into 
three conditions: overdevelopment, underdevelopment, 
and normal. However, this classification method lacks 
clinical information regarding the specific direction of 
jaw growth, making it difficult to determine whether a 
patient has a sagittal or vertical developmental issue, or 
their combination. The limited number of machine learn-
ing samples restricted this classification approach. A total 
of 574 patients were included in the study, with certain 
clinical patient types underrepresented due to data bias. 
To address this limitation in future studies, it is recom-
mended to supplement the dataset with a wider range of 
patient types.

Conclusions
This study developed an interactive decision support 
system capable of providing precise diagnoses for dento-
maxillofacial deformities and offering personalized sur-
gical plans. For this purpose, we employed BR-XGBoost 
and the aABC algorithm. The decision support system 
utilized a combination of objective evaluation indices 
and subjective assessment scores to accurately diagnose 
dento-maxillofacial deformities and generate orthogna-
thic surgery plans aligning with clinical requirements. 
Moreover, the surgical plan could be customized based 
on expert preferences to cater to individual needs. Future 
validation of this decision support system requires the 
involvement of diverse clinical centers and a wider scope, 
subsequently extending its application to subordinate 
hospitals for providing decision support to young doc-
tors. Furthermore, there is a need for further research 
on AI-assisted soft tissue prediction in orthognathic sur-
gery, which could be combined with real-time soft tissue 
change predictions to improve the design of jaw surgery 
plans.
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