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Abstract 

Artificial intelligence (AI) has been integrated into dentistry for improvement of current dental practice. While 
many studies have explored the utilization of AI in various fields, the potential of AI in dentistry, particularly in low-
middle income countries (LMICs) remains understudied. This scoping review aimed to study the existing literature 
on the applications of artificial intelligence in dentistry in low-middle income countries. A comprehensive search 
strategy was applied utilizing three major databases: PubMed, Scopus, and EBSCO Dentistry & Oral Sciences Source. 
The search strategy included keywords related to AI, Dentistry, and LMICs. The initial search yielded a total of 1587, 
out of which 25 articles were included in this review. Our findings demonstrated that limited studies have been 
carried out in LMICs in terms of AI and dentistry. Most of the studies were related to Orthodontics. In addition gaps 
in literature were noted such as cost utility and patient experience were not mentioned in the included studies.
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What is already known
Artificial Intelligence is being  used extensively in 
high-income countries in different sectors including 
healthcare.

What this study adds
The scarcity of the current application and research of 
artificial intelligence in dentistry in low-middle income 
countries.

How this study might affect research, practice, 
or policy
Application and research in  artificial intelligence perti-
nent to  dentistry in low-middle income countries can 
greatly enhance practices and policies leading to better 
patient care.

Introduction
Artificial Intelligence (AI) techniques such as Machine 
Learning (ML) and Deep Learning (DL), have the poten-
tial to execute complex diagnostic tasks, currently per-
formed by dental specialists, that leads to improved 
diagnostic accuracy and increased efficiency. Adequately 
trained AI has the ability to detect teeth, identify pathol-
ogies and anomalies including dental caries, missing or 
lost teeth, periapical lesions, and maxillofacial abnormal-
ities from dental radiographs without the involvement of 
any dentist or specialist in significantly less time and with 
more accuracy [1–3].
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However, AI research and application in real life sce-
narios is a resource-intensive task and relies upon both 
supervised and unsupervised learning techniques that 
require properly curated and annotated high quality 
datasets. These specific types of datasets are difficult to 
procure and compile.

In addition, AI research in health care warrants spe-
cialized human resources including medical profession-
als who are familiar with AI terminologies, norms, and 
standards. These domains are not a part of any under-
graduate or postgraduate at the moment  curriculum 
and require additional specialized training and exper-
tise [4, 5]. Finally, AI researchers need to have access to 
expensive hardware such as graphic processing units 
(GPU) which are difficult to acquire in a resource capped 
environment.

A combination of all these factors may lead to limited 
advancement in health care AI research and its utility in 
Low and Middle-Income Countries (LMICs) [5, 6] Ironi-
cally, it is in these same regions where the use of AI may 
have more value in terms of support and standardization 
of clinical judgment through data-orientated approaches 
[7]. Global dental health is complex and encompasses 
numerous hidden variables, including differences in 
disease prevalence between various races and ethnici-
ties based on genetics. Therefore, the training data-
sets in dentistry generated from high-income countries 
would not accurately represent the population, features 
and disease patterns for LMICs. AI trained on datasets 
from high-income countries may thus introduce errors if 
applied in a differently placed population groups [8]. Fail-
ure to tune and align the model to a particular population 
could give rise to certain unintended consequences such 
as affecting fairness, introducing biases, and disrupting 
the appropriateness of that algorithm [9]. Therefore, it is 
quintessential that AI algorithms be trained upon con-
text-specific environment, establishing their relevance 
and application [8].

Low-middle income countries face many challenges 
in terms of healthcare access and resources, especially 
dentistry. Investigating the role of AI in such countries 
relevant to dentistry can help identify the current appli-
cations and gaps to enhance and improve access of dental 
care. To optimise AI’s impact and relevance, it is essential 
to comprehend how it might be used for innovation in 
oral healthcare in settings with limited resources.

In order to identify the utility and development of AI 
pertaining to dentistry in LMICs, this scoping review 
intended to include all relevant scientific publications 
to analyze various study characteristics, with particular 
focus on the origin and quality of datasets used as well as 
any challenges linked to carrying out AI based research 
in LMICs. The level of maturity and integration of AI 

models mentioned were  also be analyzed. In addition, 
considerations of cost-effectiveness or cost-utility analy-
ses were  identified. Any AI application having a patient 
interface or interaction was  evaluated for recording 
patient experience in this regard.

Methods
This scoping review was conducted using a predeter-
mined protocol following the PRISMA Extension for 
Scoping Reviews guidelines [10]. The protocol can be 
accessed through the Open Science Framework platform 
(https://​osf.​io/​t62k3/).

Search strategy
A 3-prong search strategy defining technique of interest 
(AI, DL, ML), the specialty of interest (Dentistry), and 
setting of interest (LMICs) was developed by the authors 
in collaboration with a medical information special-
ist (Librarian, Aga Khan University Hospital, Pakistan). 
An LMIC was defined according to World Bank Group 
Classification of Economies. The studies included in this 
scoping review were based on the criteria of low-middle 
income countries as set by World Bank [11].

(World Bank Country and Lending Groups – World 
Bank Data Help Desk. https://​datah​elpde​sk.​world​bank.​
org/​knowl​edgeb​ase/​artic​les/​906519-​world-​bank-​count​
ry-​and-​lendi​ng-​groups).

The authors conducted a pilot search based on vari-
ous combinations of key search terms to formulate the 
final search strategy which was subsequently used in this 
review.

Literature search
A comprehensive literature search was conducted from 
Jan 2010 to Feb 2023 to identify relevant publications 
in three major health sciences databases i.e., PubMed, 
Scopus, and EBSCO Dentistry & Oral Sciences Source. 
Furthermore, a manual search was done by the authors 
in Google Scholar and IEEE Xplore databases to iden-
tify relevant literature not present in the aforementioned 
databases.

Search terms
The search terms used for this purpose were; “Dentistry” 
OR “Dental AND Artificial Intelligence” OR “Deep 
Learning” OR “Machine Learning” AND “LMIC” OR 
“Low Resource setting” OR “Low and Middle Income” 
OR “Underdeveloped Nations” OR “Developing Coun-
tries” OR “Developing nations” OR “Economically Devel-
oping Countries” OR “Economically Developing Nations” 
OR “Emergent Nations”.

All primary quantitative and/or qualitative research 
pertaining to the implementation of AI in the context of 

https://osf.io/t62k3/
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dental health conducted in any country defined as LMIC, 
published in a peer reviewed journal, in English language, 
and published after 2010 were included. Any published 
protocols, conference proceedings, letters to editor, and 
policy documents were excluded.

Screening process
Selected citations were exported to Endnote version 20.0 
(Clarivate Analytics) and duplicates were deleted. The 
title of each article was screened in accordance to the 
preset inclusion/exclusion criteria by (F.U, S. A and A.L). 
Any disagreement in this regard was resolved by discus-
sion between the authors. The data from the selected 
studies was extracted on a predetermined proforma to 
chart characteristics of the included studies and key find-
ings. These included country of origin, field of dentistry 
where AI was applied, dataset types and sources, anno-
tation of dataset, description of annotators, algorithms 
used, computational resource, cost utility analysis, and 
challenges of conducting AI centered research in LMICs, 
if mentioned.

Eligibility criteria
The following inclusion criteria was applied:

1)	 Primary studies
2)	 Studies related to dentistry
3)	 Studies utilizing artificial intelligence models such as 

machine learning and deep learning.
4)	 Studies published till date

The following exclusion criteria was applied:

1)	 Reviews, editorials, commentaries, and conference 
papers

2)	 Studies published in languages other than English
3)	 Non indexed studies

Data synthesis
In this scoping review, we have attempted to provide a 
comprehensive overview of the included studies. This 
involved examining various relevant aspects such as the 
origin of research, source of datasets, study designs, data-
sets curation and annotation, performance metrics, and 
the maturity of AI algorithms used. However, it should 
be noted that these studies varied significantly in terms 
of their focus of research question/task, type of input 
data, model architecture, and other factors of interest. As 
a result, we conducted a narrative synthesis to effectively 
summarize the findings and provide insight into the cur-
rent state pertinent to AI in LMICs.

Results
A total of 1578 articles were initially identified follow-
ing a detailed search using electronic and manual liter-
ature search platforms. After the removal of duplicates, 
1357  articles underwent further screening. 27 articles 
were excluded on the basis of irrelevancy. A total of 
1330 studies underwent a screening process for titles 
and abstracts. Conference proceedings, commentar-
ies, editorials, irrelevant titles, studies not from LMICs, 
description of  products, and reviews were excluded. 
Additionally, one study obtained from gray litera-
ture through Google Scholar was identified by using 
relevant search terms. After thoroughly scrutinizing 
the studies, 25 articles fulfilled the eligibility criteria. 
Hence, these articles were subjected to final analysis. 
The screening process used for this study is presented 
in the PRISMA flow chart (Fig. 1).

The overall characteristics of the included studies as 
extracted on the specially designed data extraction form 
are given in Table 1.

Most of the studies were from India (n = 12, 48%), fol-
lowed by Pakistan (n = 3, 12%) and Iran (n = 3, 12%), as 
illustrated in Fig. 2.

The majority of studies from India were focused on 
prediction (n = 14, 56%), particularly for gender, as well 
as identification of pathologies such as dental caries and 
periapical lesions.

Overall, Orthodontics was the specialty where AI was 
mostly applied (n = 7, 28%), followed by Endodontics 
(n = 6, 24%). The majority of studies were based on vali-
dation (n = 22, 88%), and those utilizing a quantitative 
approach (n = 20, 80%). The highest number of studies 
focused on diagnostic test accuracy (n = 14, 56%), fol-
lowed by prediction (n = 5, 20%) and identification of var-
ious entities (n = 3, 12%). The most frequently used type 
of dataset was Orthopantomograms (OPGs), used singu-
larly or in combination with other types of data modali-
ties. Most studies used local datasets for AI algorithm 
generation or for model training (n = 19, 76%).

Based on the stages of clinical AI development matu-
rity, it was seen that most of the studies (n = 19, 76%) 
reached stage 2, where the authors had trained and tested 
AI models on actual clinical datasets. Only one study was 
at stage 4, where the developed model for achieving dif-
ferential diagnosis was tested in the actual clinical setting.

Regarding limitations faced by the authors of the 
included studies, none were mentioned particularly in 
the context of difficulties or hurdles in carrying out the 
research in a LMIC setup. The limitations were generic, 
being confined to the size of the dataset and hence with 
subsequent limitations related to generalizability of the 
results. There was also no mention of cost-utility analysis 
in any of the included studies.
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Heat map
The heat map generated for the type of data sets used in 
the included studies (Fig. 3) against the dental specialties 
where AI was applied indicated that the highest number 
of data sets used in Restorative Dentistry were those that 
were classified as ‘others’. These included health records, 
Cystatin S levels of saliva, histology patches as well as 
scientific papers. Lateral Cephalograms and intra-oral 
photographs were only used as datasets in the specialty 
of Orthodontics. Orthopantomograms (OPGs) were the 
most frequently used datasets utilized across specialties 
including Orthodontics, Operative Dentistry, Oral and 
Maxillofacial Surgery, Periodontology, and Oral radiol-
ogy, with the highest number of this type of dataset used 
in Oral Radiology. For Endodontics, the datasets used 
were periapical radiographs, followed by CBCT and case 
difficulty assessment forms. The specialty of Orthodon-
tics overall used a greater variety of datasets including 
intra-oral photographs, lateral cephalograms, OPGs, 
dental clinic data, and casts. This indicates that the spe-
cialists in this field are trying to develop AI applications 
based on a multitude of diagnostic and assessment tools.

Discussion
AI is increasingly being adopted in dentistry in recent 
times, with particular focus on research in this domain 
[36]. However, even though AI can be considered a global 

phenomenon, there has been a dearth in identifying the 
prospects and contribution of researchers from develop-
ing countries in this field of innovation. This omission 
could potentially lead to biases and health inequities if AI 
perspectives of underdeveloped nations are not consid-
ered, where application potential may be far greater than 
in developed nations [37]. AI based entities could help pro-
vide patients a diagnosis, predict the spread of disease and 
outbreak predictions when applied in the healthcare sector 
within LMICs [4]. However, since there was limited report-
ing of its application in dentistry, therefore, this review was 
designed in order to encompass the focus and progress of 
research pertaining to dentistry and AI contributed by low 
and middle income countries (LMICs). A comprehensive 
compilation of data from these studies could be generated, 
highlighting dental specialties which are evolving through 
the use of AI, domains of research, types, and maturity of 
AI applications as well as recognize gaps in research. Any 
challenges put forth by researchers relevant to the develop-
ment and application of AI would be analyzed, providing 
evidence for the support and progression of AI based den-
tistry in LMICs through relevant global agencies. This will 
enable researchers to focus on these gaps and improve the 
inclusivity and diversity of AI research in dentistry.

The LMICs category consists of 54 countries, as 
reported by the World Bank (https://data.worldbank.org/
country/XN). Despite our best efforts, only 25 studies 

Fig. 1  PRISMA flow chart

https://data.worldbank.org/country/XN
https://data.worldbank.org/country/XN
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from eight LMICs that met our inclusion criteria could 
be found. This number is significantly lower than the 168 
studies found in the most recent comprehensive scop-
ing review, which conducted its search in May 2021 [36]. 
It is important to acknowledge that the low number of 
included studies our review is consistent with the broader 

trend in the healthcare industry, where only 1–3% of 
research involves investigators from LMICs [38].

Most of the included studies were from India. 
This observation is consistent with the pattern of AI 
research in other healthcare domains, where Indian 
researchers have made a significant contribution [39].

Fig. 2  Low-middle income countries where AI has been utilized

Fig. 3  Heatmap of the included studies depicting datasets, specialties, and sample size
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The heat map indicated that Orthodontics and Endo-
dontics were the most common specialties where AI was 
being applied in LMICs, with dental caries and periapi-
cal lesions being the most frequently studied pathologies. 
The studies mainly used validation methodology with a 
quantitative approach, and focused diagnostic test accu-
racy, which is an important domain for LMICs, since 
accurate and timely diagnosis could result is significant 
decrease in morbidity, mortality, and expenditure in a 
resource deprived area. The most commonly used type of 
data set was orthopantomograms (OPGs), used alone or 
in combination with other types of data sets. This finding 
is also in accordance with other scoping reviews [40].

The prevalence of deep learning techniques, specifi-
cally Convolutional Neural Networks (CNNs), was found 
to be prominent in AI algorithms, with a diverse range of 
CNN architectures being utilized. This dominance could 
be because CNNs are highly effective in addressing com-
puter vision tasks. Classical machine learning approaches 
were also observed to be widely adopted, primarily in 
developing decision support systems, and are consistent 
with other literature [3, 41]. Furthermore, datasets used 
in the included studies were relatively small and not rep-
resentative of the broader population. The small dataset 
sizes used could be because most studies did not report 
sample size calculations. Without proper sample size 
estimations, researchers may not have had a clear under-
standing of the required number of datasets or diagnostic 
documentation needed to adequately represent the target 
population [42]. This lack of planning may have resulted 
in smaller datasets being used, which can impact the sta-
tistical power and generalizability of the results [16, 42]. 
This challenge is not unique to dental artificial intelli-
gence (AI) research in LMICs, rather it has been widely 
documented in dental studies even from developed and 
resource rich countries [5,  36,  43,  44]. Poor quality and 
deficient datasets can lead to problems such as biases 
in AI algorithms and may impact the accuracy and reli-
ability of AI in dentistry. The lack of quantity and qual-
ity of datasets from LMICs impedes their generalizability, 
even for these countries, let alone for use in high-income 
countries or regions with different demographics.

In addition, the curation and annotation methods of 
datasets used in the included studies were not consist-
ently reported. To prevent biases and inaccuracies in AI 
algorithms, it is essential to train them using context-
specific environments. The above narrative suggests that 
the datasets used in AI research in dentistry are relatively 
small, not representative of the broader population, and 
the reporting of curation and annotation methods of 
these datasets was deficient. These issues are particu-
larly prevalent in LMICs. This lack of transparency raises 
questions about the quality and reliability of the datasets, 

which are critical for development and validation of AI 
algorithms in dentistry [3, 36, 45]. Therefore, it is impor-
tant for researchers in LMICs to focus on sourcing high-
quality, representative datasets, curation, and annotation 
methods to improve the development and validation of 
AI algorithms in dentistry, even though it be challenging 
and time-consuming in a resource-limited setting.

Without simultaneously addressing the fundamental 
issue of inadequate infrastructure, the potential of these 
technologies in global health remains uncertain [5, 41]. It 
seems ironic that the lack of adequate resources prevent 
the development and implementation of AI applications 
in LMICs, where through the use of AI, healthcare could 
eventually become more cost-effective. This fact  should 
be realized by funding and research agencies globally, so 
sufficient funds and resources could be directed towards 
for researchers in LMICs researchers to explore the 
various avenues of AI application in healthcare in these 
countries.

Although there is a burgeoning interest in the use of 
AI in dentistry, its translation from academic investiga-
tion to practical software application remains a work in 
progress. To better understand the deployment of AI 
in LMIC, we also stratified the included studies in our 
review according to the maturity of their development 
stages, as described by Zhang and colleagues [38]. This 
model describes four stages: math into algorithm, algo-
rithm into model, model into device, and device into 
practice. Majority of research in AI in dentistry was 
focused on the algorithm-to-model stage, involving test-
ing performance of models on labeled datasets. Only 
three studies progressed to the model-into-device stage. 
One such study, conducted by Mariam et al., used gaze-
based annotation of histology images to compare the effi-
ciency of AI versus human annotation finding AI to be 
more efficient [16].

The other two studies compared WebCeph, an online 
orthodontic software tool that uses AI technology for 
cephalometric analysis. Both studies utilized indigenous 
datasets and compared manual tracing with WebCeph 
tracing, but did not find any statistically significant dif-
ferences in the tracing accuracy [32]. However, Web-
Ceph was significantly faster. Notably, the authors of 
this review were unable to obtain details about the algo-
rithm and dataset used to train the WebCeph model. 
Finally, one study utilized a machine learning algorithm 
to improve patient recall rate by 15% [29]. Different stud-
ies have been conducted to enhance the field of ortho-
dontics, such as a study by Bahrami et  al., emphasizing 
on Smart Orthodontic Brackets where utilization of 
machine learning algorithms can help improve and opti-
mize orthodontic treatment outcomes [46].



Page 14 of 16Umer et al. BMC Oral Health          (2024) 24:220 

Only two studies have attempted to validate the deploy-
ment of the device in a real-world environment. One study 
by Ehtesham et  al. used AI as a decision support system 
for oral pathology detection. It is worth reporting that the 
deployment period lasted only 5 days, and the validation 
was conducted on a small sample of 39 patients [14].

Artificial intelligence (AI) holds promise in enhanc-
ing workflow and efficiency within healthcare practices. 
As such, it is essential that the AI system is user-friendly 
and compatible with existing infrastructure for effective 
implementation. However, this study had limitations, 
including a short duration of observation and limited 
number of patients, and was not entirely representa-
tive of the true environment for AI implementation and 
therefore warrants further research.

The other study by Ghosh et al. used bespoke messages, 
based on patients treatment needs, to send reminders for 
follow up visits which helped improve patient recall rate. 
This was the only study that described the patient experi-
ence with AI implementation in dental clinics [29].

In terms of future-orientated approach, there is an 
essential need to develop regulations concerning patient 
safety, confidentiality and privacy when AI is actually 
implemented in the real world settings. Moreover, there 
was a lack of cost-effectiveness or cost-utility analyses 
among the studies, highlighting a crucial gap in research 
that needs to be evaluated further. Besides the use of AI 
in clinical dentistry, its utility for academics and training 
of dental students is also an avenue worth exploring.

This study is unique since it attempts to holistically 
identify the research that has been conducted and sub-
sequently published pertinent to the application of AI 
in dentistry hailing from LMICs. The authors of the 
included studies included did not mention any specific 
limitation in conducting AI based research in LMICs in 
terms of constraint of resources. However,  the fact that 
only 25 studies from around the globe could be included 
in this review is a testament to the fact that the ongoing 
research in LMICs is significantly deficient. This could be 
attributed to the dearth of resources, among other pos-
sible factors which need to be further investigated. We 
found all included studies to have mentioned the deep 
learning techniques, algorithms, and Al model as well 
as datasets that they used in their research. However, 
another study done on the AI application in the health-
care sector in LMICs reported half of the included stud-
ies did not mention this information, even though the 
review focused on research done on real world applica-
tion of AI [47].

Some limitations that were faced in conduction of this 
review included the difficulty in making specific and 
clear-cut conclusions from results of the included studies 
because of variability in study methodologies, reporting 

of the results, and the AI entities used. Therefore, a sum-
mary chart was included in order to display the results of 
the included studies.

Conclusion
This scoping review identified all pertinent literature 
related to AI application and research in dentistry, 
hailing from LMICs. It was found that most studies 
were from India, done in the specialty of Orthodon-
tics, focusing on diagnostic test accuracy with valida-
tion study design and a quantitative approach. Most 
frequent datasets used were OPGs, with limited num-
ber of datasets in all included studies. Majority of the 
studies reported AI maturity at level 2. There was no 
reporting of limitations that researchers faced based on 
the lack of resources in LMICs but the scant research 
available from LMICs in this domain is a clear indica-
tion of this. There was no mention of cost-utility analy-
sis or patient experience, which are gaps that need to 
be addressed in subsequent studies. In addition,  there 
was a great variability in reporting of results. Overall, it 
was seen from the limited number of studies included 
in this review that the utility and research relevant 
to AI in dentistry is significantly deficient in LMICs. 
With the interest and support of the global community, 
researchers in LMICs would be able to attain the neces-
sary resources to expand the application and utility of 
AI in dentistry in these countries, resulting in a greater 
number of research publications.
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